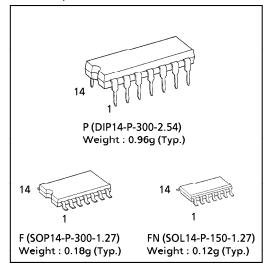
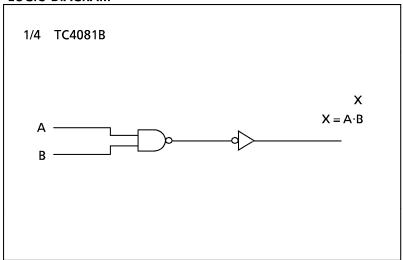
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

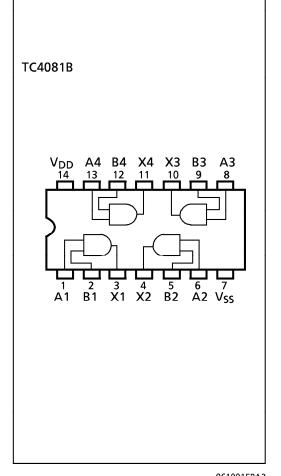

TC4081BP, TC4081BF, TC4081BFN

TC4081B QUAD 2 INPUT AND GATE

TC4081B is positive logic AND gates with two inputs respectively.

Since all the outputs of these gates are equipped with the buffer circuits of inverters, the input/output propagation characteristic has been improved and variation of propagation time caused by increase of load capacity is kept minimum.


(Note) The JEDEC SOP (FN) is not available in


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	V _{IN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	٧
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	٧
DC Input Current	I _{IN}	± 10	mΑ
Power Dissipation	P _D	300 (DIP) / 180 (SOIC)	mW
Operating Temperature Range	T _{ope}	- 40~85	°C
Storage Temperature Range	T _{stg}	- 65~150	°C

LOGIC DIAGRAM

PIN ASSIGNMENT (TOP VIEW)

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

RECOMMENDED OPERATING CONDITIONS ($V_{SS} = 0V$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD}		3	_	18	V
Input Voltage	V _{IN}		0	_	V _{DD}	V

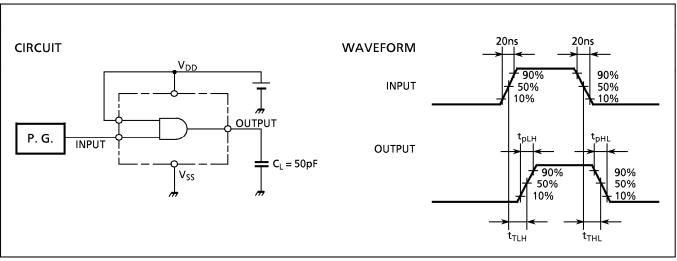
STATIC ELECTRICAL CHARACTERISTICS $(V_{SS} = 0V)$

CHARACTERISTIC		SYM- BOL	TEST CONDITION	V_{DD}	– 40°C			25°C		85°C		UNIT
				(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONIT
High-Leve Output V		V _{OH}	$ I_{OUT} < 1\mu A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	4.95 9.95 14.95		4.95 9.95 14.95	5.00 10.00 15.00		4.95 9.95 14.95	– –	
Low-Leve Output V		V _{OL}	$ I_{OUT} < 1\mu A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15		0.05 0.05 0.05		0.00 0.00 0.00	0.05 0.05 0.05		0.05 0.05 0.05	V
Output H Current	ligh	I _{OH}	$V_{OH} = 4.6V$ $V_{OH} = 2.5V$ $V_{OH} = 9.5V$ $V_{OH} = 13.5V$ $V_{IN} = V_{SS}$, V_{DD}	5 5 10 15	- 0.61 - 2.50 - 1.50 - 4.00	_	- 0.51 - 2.10 - 1.30 - 3.40	- 1.0 - 4.0 - 2.2 - 9.0		- 0.42 - 1.70 - 1.10 - 2.80		m A
Output L Current	ow	I _{OL}	$V_{OL} = 0.4V$ $V_{OL} = 0.5V$ $V_{OL} = 1.5V$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	0.61 1.50 4.00	_	0.51 1.30 3.40	1.2 3.2 12.0		0.42 1.10 2.80	_ _ _	IIIA
Input Hig	gh Voltage	V _{IH}	$V_{OUT} = 0.5V, 4.5V$ $V_{OUT} = 1.0V, 9.0V$ $V_{OUT} = 1.5V, 13.5V$ $ I_{OUT} < 1\mu A$	5 10 15	3.5 7.0 11.0	111	3.5 7.0 11.0	2.75 5.50 8.25	111	3.5 7.0 11.0	111	<
Input Low Voltage		V _{IL}	$V_{OUT} = 0.5V, 4.5V$ $V_{OUT} = 1.0V, 9.0V$ $V_{OUT} = 1.5V, 13.5V$ $ I_{OUT} < 1\mu A$	5 10 15		1.5 3.0 4.0	111	2.25 4.50 6.75	1.5 3.0 4.0	1 1 1	1.5 3.0 4.0	V
Input	"H"Level	I _{IH}	V _{IH} = 18V	18	_	0.1	-	10 ⁻⁵	0.1	_	1.0	
Current	"L" Level	I _{IL}	$V_{IL} = 0V$	18	_	-0.1	_	- 10 ⁻⁵	-0.1		- 1.0	
Quiescent Current	t Supply	I _{DD}	$V_{IN} = V_{SS}, V_{DD}*$	5 10 15		0.25 0.50 1.00	_	0.001 0.001 0.002	0.25 0.50 1.00	_	7.5 15.0 30.0	μ A

^{*} All valid input combinations.

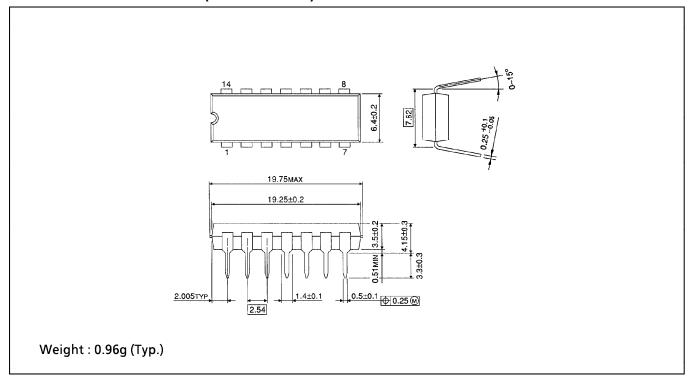
961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.

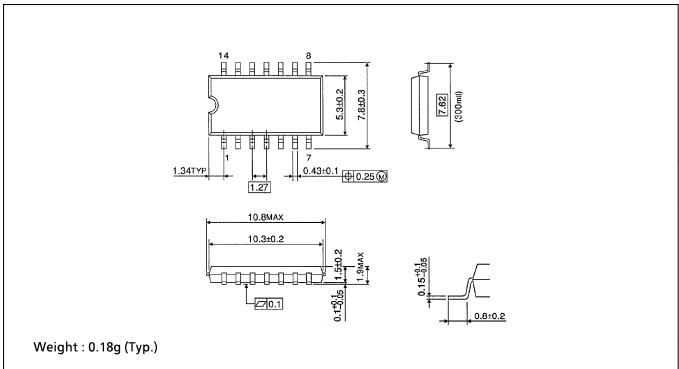

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

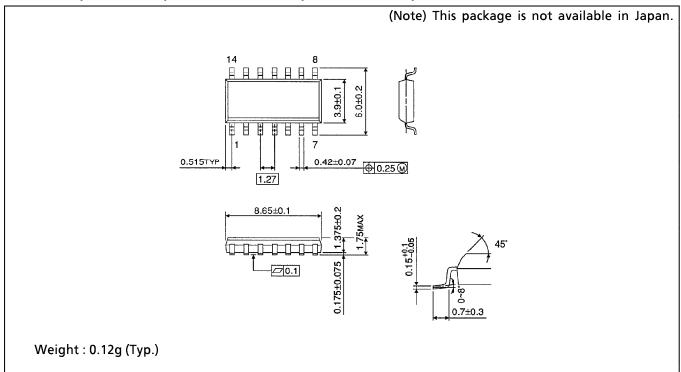
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vss = 0V, $C_L = 50$ pF)


CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5		70	200	
	t _{TLH}		10	_	35	100	
			15		30	80	
Output Transition Time			5	_	70	200	
	t _{THL}		10	_	35	100	
			15		30	80	
Propagation Delay Time			5		65	200	ns
	t _{pLH}		10	_	30	100	
			15	<u> </u>	25	80	
Propagation Delay Time			5	_	65	200	1
	t _{pHL}		10	_	30	100	
			15	_	25	80	
Input Capacitance	C _{IN}		•	_	5	7.5	pF

CIRCUITS AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS


DIP 14PIN OUTLINE DRAWING (DIP14-P-300-2.54)

Unit in mm


SOP 14PIN (200mil BODY) OUTLINE DRAWING (SOP14-P-300-1.27)

Unit in mm

SOP 14PIN (150mil BODY) OUTLINE DRAWING (SOL14-P-150 -1.27)

Unit in mm

